EDUCATION FOR SUSTAINABLE DEVELOPMENT: AN INTRODUCTION

Leif Östman & Katrien Van Poeck – Quito, Ecuador – 11 December 2017
INTRO...
EDUCATION FOR SUSTAINABLE DEVELOPMENT (ESD):
A WORLDWIDE AMBITION
INTERNATIONAL POLICY CONTEXT

- **UN Decade** of Education for Sustainable Development: 2005-2014
 - Integrate the principles, values, and practices of sustainable development into all aspects of education and learning
 - Encourage changes in behaviour that will create a more sustainable future

- **Global Action Programme** on ESD: priority action areas:
 1. Advancing policy
 2. Transforming learning and training environments
 3. Building capacities of educators and trainers
 4. Empowering and mobilizing youth
 5. Accelerating sustainable solutions at local level
INTERNATIONAL POLICY CONTEXT

2016: UN Agenda 2030: Sustainable Development Goals

Target 4.7: By 2030, ensure that all learners acquire the knowledge and skills needed to promote sustainable development.
SUSTAINABLE DEVELOPMENT

98.300.000 Google hits, hundreds of definitions & models

→ catch-all term
SUSTAINABLE DEVELOPMENT:
KEY PRINCIPLES
1. SOCIAL JUSTICE

Inequality
Unequal distribution of costs and benefits

- Transport is responsible for 14% of greenhouse gas emissions
- Airplane traffic: privilege for 5% of world population
- Most wealthy 20% owns 87% of the cars
1. SOCIAL JUSTICE

“Hungry Planet: What the world eats” (P. Menzel & F. D’Aluisio)
1. SOCIAL JUSTICE

The miniature Earth: what if our planet was a village with 100 inhabitants? (Bernard Combes, UNESCO)

- 59% of all wealth goes to 6 people
- 17 women and 8 men live in extreme poverty
- 80 people have bad housing
- 50 people are undernourished
- 70 people are illiterate – only 1 holds a university degree
- Of all 23 children (aged 5-14) 6 are working (3 fulltime, without education)
- 70% of all the work is done by the 50 women – together they earn 10% of all income
2. ECOLOGICAL BOUNDARIES

Humanity is simply demanding more than Earth can provide.
2. ECOLOGICAL BOUNDARIES

Safe operating space for humanity (J. Rockström)
2. ECOLOGICAL BOUNDARIES

Depletion of resources
2. ECOLOGICAL BOUNDARIES

Pollution

Luchtverontreiniging, vooral fijn stof, kost de gemiddelde Vlaming tot 3 gezonde levensjaren.

Figure 1: Verloren levensmaanden in 2000 in Europa als gevolg van luchtverontreiniging (EU 2005)
2. ECOLOGICAL BOUNDARIES

Ecological footprint

Top 10 countries with the biggest ecological footprint per person

- Qatar: 11.68
- Kuwait: 9.72
- UAE*: 8.44
- Denmark: 8.25
- USA: 7.19
- Belgium: 7.11
- Australia: 6.68
- Canada: 6.43
- Netherlands: 6.34
- Ireland: 6.22

Top 10 African countries with the biggest ecological footprint per person

- Mauritius: 4.55
- Mauritania: 2.86
- Botswana: 2.84
- South Africa: 2.59
- Egypt: 2.06
- Namibia: 2.03
- Tunisia: 1.76
- Chad: 1.89
- Mali: 1.86
- Gabon: 1.81

*United Arab Emirates

Source: WWF

Graphics24
3. SOLIDARITY (WITHIN AND BETWEEN GENERATIONS)

“Enough, forever, for everyone”
3. SOLIDARITY (WITHIN AND BETWEEN GENERATIONS)

“Enough, forever, for everyone”
4. FUNDAMENTAL SOCIETAL CHANGE

[Diagram showing the relationship between socio-technical landscape, socio-technical regime, niche innovations, and time.]

- Landscape developments put pressure on the regime and stimulate niches.
- New regime: actors, technology, policy, culture etc.
- Configurations break through: landscape pressure, niche improvements, destabilisation regime. Long-term processes, going through different stages.
- Small actor networks support innovations. Expectations, visions, learning.
4. FUNDAMENTAL SOCIETAL CHANGE
SUSTAINABLE DEVELOPMENT

TEACHING
<table>
<thead>
<tr>
<th>Teaching</th>
<th>The student’s learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sustainable development knowledge</td>
<td>A. Theoretical knowledge</td>
</tr>
<tr>
<td></td>
<td>B. Skills to apply knowledge to a SD issue</td>
</tr>
<tr>
<td>Argumentation and decision-making skills</td>
<td>C. Skills to apply theoretical knowledge for making wise</td>
</tr>
<tr>
<td></td>
<td>decisions</td>
</tr>
<tr>
<td></td>
<td>D. Ethical capability: value clarification, moral standpoint…</td>
</tr>
<tr>
<td>Action capability</td>
<td>E. Skills to apply theoretical knowledge in order to carry</td>
</tr>
<tr>
<td></td>
<td>through SD decisions in everyday life</td>
</tr>
<tr>
<td></td>
<td>F. Practical SD knowledge</td>
</tr>
</tbody>
</table>
TEACHING ABOUT ECOLOGICAL FOOTPRINT

A. Theoretical knowledge: e.g. ecology, demography, mathematics, geography…

B. Applying knowledge to SD issue: e.g. unequal distribution of ecological footprints worldwide, ecological impact of lifestyles…
C. Skills for wise decisions: e.g. Is it possible to copy the meat consumption of an average US citizen worldwide?; Should the government invest in cars or trains?; Is every country equally responsible for climate change? …

D. Ethical capability: e.g. Is it fair to go on holiday by airplane?; Am I prepared to live a lifestyle within the planet’s boundaries? Why (not)? What are the consequences? …
TEACHING ABOUT ECOLOGICAL FOOTPRINT

E. Skills for everyday life: e.g. growing (organic) vegetables, repairing clothes and tools, cooking ecologically, insulating the loft, reading bus schedules …

F. Practical SD knowledge: e.g. What are efficient energy-saving techniques?; Which vegetables are locally available? …
Katrien Van Poeck
CENTRE FOR SUSTAINABLE DEVELOPMENT
E katrien.vanpoeck@ugent.be
T +32 9 264 82 07
M +32 475 59 05 54
www.ugent.be
www.cdo.ugent.be

Leif Östman
UPPSALA UNIVERSITY, DEPT. OF EDUCATION
E leif.ostman@edu.uu.se